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Multiplicative semiclassical dynamics and the quantization time

L. Kaplan*
Department of Physics and Society of Fellows, Harvard University, Cambridge, Massachusetts 02138

~Received 9 March 1998!

We study smooth, caustic-free, chaotic semiclassical dynamics on two-dimensional phase space and find that
the dynamics can be approached by an iterative procedure that constructs an approximation to the exact
long-time semiclassical propagator. Semiclassical propagation all the way to the Heisenberg time, where
individual eigenstates are resolved, can be computed in polynomial time, obviating the need to sum over an
exponentially large number of classical paths. At long times, the dynamics becomes quantumlike, given by a
matrix of the same dimension as the quantum propagator. This matrix, however, differs both from the quantum
and the one-step semiclassical propagators, allowing for the study of the breakdown of the semiclassical
approximation. The results shed light on the accuracy of the Gutzwiller trace formula in two dimensions, and
on the source of long-time periodic orbit correlations.@S1063-651X~98!12208-0#

PACS number~s!: 05.45.1b, 03.65.Sq
k
pr
ca
u
re
b

oo

an
te
io
o
li

nc
s,

e
u
f
nd
io
e
su
or
v
e

e

xp
ar
a
s
em

t

of
use
to

ave

p-
in.
the

ing
ast
ry
the

ur-
ics
aller

hes
ical

by
his
om
cal

out
an

le in
e
-
ned

does
the
n of
c-
tro-
tice
I. INTRODUCTION

Semiclassical methods have a long history dating bac
the very beginnings of quantum mechanics, and have
vided insight into many properties of quantum-mechani
systems. These methods provide a bridge, expressing q
tum behavior in terms of classical paths and their cor
sponding actions. In integrable systems, the connection
tween quantum and classical behavior is well underst
through Einstein-Brillouin-Keller~EBK! quantization tech-
niques, which lead to an intuitive understanding of the qu
tum properties of these systems. For a nonintegrable sys
it is not nearly as clear how much of the quantum behav
~e.g., spectrum, eigenstates, long-time dynamics, transp!
can be understood via semiclassical methods. One would
to be able to separate out those features of the quantum
havior that can thus be explained in terms of interfere
between classical paths from the ‘‘hard quantum effect
such as diffraction and tunneling.

Although the Van-Vleck formula describing short-tim
quantum behavior in terms of classical paths has been aro
for many years, it is only starting with the work o
Gutzwiller @1# that it has been possible to try to understa
long-time quantum properties in terms of classical behav
Much insight is given by the Gutzwiller trace formula in th
energy domain, which relates the quantum spectrum to a
over classical periodic orbits. However, the formula is a f
mal expression, which needs to be resummed to get con
gence in the limit where more and more orbits are includ
@2#. Furthermore, in practice summing over long orbits~ones
with period comparable to\ times the density of states of th
system, so that individual eigenstates can be resolved! is not
feasible, because the number of classical orbits grows e
nentially with time in a chaotic system. Special cases
known for which the long-time semiclassical dynamics c
be computed exactly, e.g., the cat map and geodesic flow
surfaces of constant negative curvature. However, the s
classical evolution for these systems is in fact the same as
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quantum evolution because of their linearity~or homogeneity
in the case of constant negative curvature!, making them less
interesting as a testing ground for the general applicability
semiclassical methods. Cycle expansion methods, which
the symbolic dynamics of the underlying classical system
express long periodic orbits in terms of shorter ones, h
been very important in this regard@3#.

However, this still leaves open the question of the pro
erties of the semiclassical dynamics in the time doma
Much important work here has been done in systems like
stadium billiard and the baker’s map@4#. Numerical evidence
was produced, and theoretical arguments given, show
clearly that the semiclassical approximation works well p
the mixing time of the system, where multiple stationa
paths contribute to the quantum propagator, and where
purely classical approximation~without interference effects!
breaks down completely. This was initially somewhat s
prising, because after the mixing time the classical dynam
begins generating structures in phase space on scales sm
than Planck’s constant, while the quantum dynamics was
out any information on these scales. Thus the semiclass
approximation tries to follow the quantum propagator
summing over an exponentially large number of paths. T
exponential proliferation of classical paths prevents one fr
performing meaningful long-time quantum-semiclassi
comparisons for small values of\ ~large Heisenberg time!.
The fact that the quantum propagator effectively smears
all of the sub-\ structure in phase pace, and thus contains
amount of information that scales only as a power law in\,
suggests that some such reduction may also be possib
the semiclassical calculation. This is important becausa
priori it is not at all obvious~i! that the long-time semiclas
sical dynamics converges in the sense of having well defi
stationary states at the Heisenberg time, or for that matter~ii !
that in those cases where the semiclassical dynamics
converge, what it converges to actually approximates
quantum dynamics, stationary states, etc. The breakdow
semiclassical validity, in particular in the presence of diffra
tion, discontinuities, and caustics, is also a somewhat con
versial issue that has been difficult to address in prac
because of the computational obstacles.
2983 © 1998 The American Physical Society
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A key reason for the finiteness of long-time informatio
in the quantum case is the multiplicativity of the quantu
propagator. In other words, the long-time dynamics can
obtained by simply iterating the short-time propagation~ma-
trix multiplication in the case of a finite-dimensional Hilbe
space!. The semiclassical dynamics does not share this p
erty because concatenations of classical paths in general
duce paths that arenot classical. Stationary phase integra
must be performed to obtain the long-time semiclass
propagator from shorter steps, and the number of station
phase points grows exponentially with time. An interesti
way to make the semiclassical dynamics multiplicative
extending the space on which the multiplicative operator a
has been described by Cvitanovic´ and Vattay@5#. It has also
been seen that in the special case of the baker’s map
long-time dynamics can be computed with good accurac
polynomial time using the Heisenberg uncertainty princi
and the exponential decay of time correlations in chao
systems@6#. These methods~of which three are known to the
author! effectively collect together all contributions from
classical paths that come together on scales much sm
than \. Semiclassical amplitude thus collected can then
propagated again, thus making the resulting dynamics m
plicative. All the methods, however, made use of the sim
symbolic dynamics of the baker’s map and its very spe
structure in position and momentum space. Some of
ideas of consolidation on sub-\ scales, however, may ye
turn out to be fruitful in analyzing more generic system
with no such special structure.

In this paper, we take a somewhat different approach
the problem, inspired by the fact that in the baker’s map
have found that a good approximation to the long-time se
classical dynamics could be obtained even if one periodic
projects the higher-dimensional semiclassical vector onto
N-dimensional quantum space. In other words, the true se
classical dynamics is evaluated exactly forTQ steps.~TQ is
called the quantization time, and can be thought of as
time domain analog of theT* parameter in the spectra
theory of Bogomolny and Keating@7#. One should note
however, that in periodic orbit theory, the critical timeT*
should scale as the mixing time, logarithmically with\,
whereas our scaleTQ is of order 1 in units of the shortes
periodic orbit. See the discussion in Sec. V.! Matrix elements
are then taken between quantum states, producing a m
of the same dimension as the quantum propagator. This
trix is then iterated to produce an approximation to the lo
time semiclassical behavior. Now forTQ51 this is very
reminiscent of Bogomolny’s approach to quantization@8#. It
should be noted, however, that forTQ51, this procedure
doesnot produce anything at all resembling the long-tim
semiclassical dynamics. In fact, for smallTQ one gets closer
and closer to the exactquantumdynamics, as can be seen b
taking the limitTQ→0 and recovering the Feynman form
the quantum propagator. This is good if one just wants
know the quantum answer, but not if one is interested
understanding how quantum dynamics is affected by cla
cal properties, in the sense, for example, of the Gutzwi
trace formula. What is interesting here is that forTQ@1, but
still much smaller than the Heisenberg time, one can obta
good approximation to the actual long-timesemiclassicaldy-
namics, and thus study the validity~and breakdown! of the
e
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semiclassical propagation. Detailed comparisons beco
easily possible between quantum and semiclassical spe
eigenstates, long-time transport, and other properties.

Here we apply these ideas to a somewhat different c
of systems, ones that lack the somewhat unpleasant ‘‘cut
paste’’ discontinuities of the baker’s map, which are n
piecewise linear, and which are also more generic in
sense of constituting a large family and allowing for contin
ous perturbations. These systems, namely smooth auto
phisms of the torus~e.g., kicked maps and perturbed c
maps! lack a special symbolic dynamics and have no p
ferred basis, making them a good test case for the id
outlined above. An important constraint is that we shall
looking exclusively here at caustic-free, purely chaotic s
tems. Caustics, discontinuities, and mixed phase space a
important subjects of inquiry and will be looked at in a futu
paper. It should be pointed out that the procedure prese
in what follows does not make use of detailed knowled
about the system at hand. In this way, it may be more rob
than, for example, the cycle expansion methods in perio
orbit theory. Because no explicit use is made of perio
orbits, it need not be the case here that long periodic or
can be expressed in terms of short periodic orbits, for
ample. All that is needed is that long paths can be c
structed out of short paths, something that is true in all
the most pathological cases.

The rest of this paper is organized as follows: we fi
briefly review the classical, quantum, and semiclassical
namics of the systems under consideration. The iteration
semiclassical propagators is discussed, and error estim
are given as a function of propagation time, quantizat
time, and\, with particular emphasis on Heisenberg-tim
propagation. Numerical tests follow, showing the conv
gence of the iterative approximation as well as measuring
deviation from exact quantum and one-step iterative resu
Then the ‘‘effective one-step semiclassical propagator’’
discussed, which with exponential accuracy describes lo
time semiclassical propagation, and which differs from t
quantum and one-step semiclassical matrices. Again,
merical findings are presented. Finally, the conclusion tre
some general questions and addresses possible applica
and extensions of the results obtained.

In a companion paper to this article@9#, the methods are
extended and applied to the study of semiclassical dynam
localization in classically diffusive systems, showing that
fact interference between classical paths is sufficient to
derstand the end of quantum diffusion in these systems.

II. THEORETICAL ANALYSIS

A. Hard chaotic dynamics on a torus

We will consider smooth, chaotic classical dynamics o
compact phase space, satisfying the Anosov property
free from caustics in the coordinate system of interest.~The
Anosov property means that at each phase space poin
tangent space can be decomposed into an exponentially
panding linear subspace and an exponentially contracting
ear subspace. For two-dimensional phase spaces, there i
expanding and one contracting direction at each point.! To
be specific, let us take the following family of discrete are
preserving maps on a torus:
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p→ p̃5p1mq2V8~q!mod 1,

q→q̃5q1np̃1T8~ p̃!mod 1. ~1!

The above dynamics can be obtained from the strobosc
discretization of a kicked system@10# with a kick potential
2 1

2 mq21V(q) applied once every time step and a free ev
lution governed by the kinetic term12 np21T(p). Herem,n
are arbitrary integers, whileV,T are smooth periodic func
tions. The system can also be thought of as a continu
perturbation of the linear system~cat map! @11#

p→ p̃5p1mqmod 1,

q→q̃5np1~mn11!qmod 1. ~2!

The Jacobian of the transformation in Eq.~1! is given by

J5F 1 m2V9~q!

n1T9~ p̃! 11@n1T9~ p̃!#@m2V9~q!#
G . ~3!

We notice that for given integersm,n we can choose the
functionsV andT such that the quantitym2V9(q) is strictly
greater than 0 for allq and similarly for n1T9( p̃). ~In
words, we ensure that the system everywhere looks loc
like an inverted harmonic oscillator.! This implies strict posi-
tivity of all four entries in the Jacobian matrix, a proper
that is of course preserved under iteration of the dynam
Furthermore, positivity of both off-diagonal entries implie
hyperbolicity, because it ensures detJ.2. All such systems
therefore provide examples of hard chaos, being free of
tegrable regions. To see that they are free of caustics in e
position or momentum space, it is sufficient to note that
two off-diagonal entries of the Jacobian,]p(t)/]q(0) and
]q(t)/]p(0), always remain nonzero.

The quantization of kicked systems is straightforward a
well-covered in the literature@10#. We take \ so that N
51/2p\ has an integer value. Then anN-dimensional posi-
tion basis for the Hilbert space is given byuqi&, whereqi
5( i 1e0)/N, i 50¯N21. Similarly, the momentum spac
basis is given byupj&, with allowed valuespj5( j 1e1)/N,
j 50¯N21. e0,1 form a family of possible quantization
conditions ~they correspond to phases associated with
cling the torus in thep andq directions, respectively!. The
two bases are related by a discrete Fourier transform.
dynamics is now defined by the unitaryN3N matrix

U5expF2 i S 1

2
np̂21T~ p̂! D Y \G

3expF i S 1

2
mq̂22V~ q̂! D Y \G , ~4!

where each factor is evaluated in the appropriate basis,
an implicit forward and backward Fourier transform has be
performed. As in the linear~cat map! case, continuity of the
potential and kinetic terms~mod\! requires thatN be chosen
even, unless bothm andn are even. The key point is thatU
here is just a matrix, and the long-time quantum evolution
the system is given by matrix multiplication. Alternativel
the matrixU can be diagonalized to find the stationary pro
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erties ~eigenstates and eigenvalues! of the system. All this
can be performed in polynomial time, and the total amo
of information contained in the quantum system is of ord
N2. In particular, all of the information is present in th
one-step quantum propagator.

B. Semiclassical dynamics

We now consider the long-time semiclassical dynamics
given by the Gutzwiller–Van-Vleck propagator@1# evaluated
between quantum mechanically allowed states. In posi
space, the propagator has the form

Gsc~q,q8,t !5F 1

2p i\ Gd/2

(
j

Udet
]2Sj~q,q8,t !

]q]q8
U1/2

3expF iSj~q,q8,t !

\
2

ipn j

2 G , ~5!

whereSj is the action for classical pathj , the determinant
corresponds to the classical probability density for going
tweenq andq8 via this path, and the phase is given by t
action, corrected by the count of conjugate pointsn j . For
any given timet, this produces anN3N matrix At . The
semiclassical evolution must of course be evaluated in so
coordinate system, such as position or momentum, but o
the matrix has been constructed it can be rotated into
quantum basis that one finds convenient. Being a matrix c
necting quantum in and out states,At looks like a quantum
object, but it is not unitary (AtA2tÞI ) and does not satisfy
multiplicativity (At1t8ÞAtAt8). Thus it is nota priori obvi-
ous, for example, that the semiclassical evolution at lo
times converges to a well-defined set of eigenstates and
genvalues, i.e.,Atcn'en

t cn , or whether such eigenvalue
and eigenstatesen ,cn have any connection with those of th
quantum dynamics.

Let us study the deviation from multiplicativity of th
semiclassical dynamics in a smooth chaotic system. We n
first that for semiclassical propagators in the time domain

A2t~q9,q!5E
sp

dq8At~q9,q8!At~q8,q!, ~6!

where*sp indicates that the equality holds only if the inte
mediate integration is performed by stationary phase@12#. If
the integration is performed exactly instead of in the stati
ary phase approximation, we obtain a relative error of or
\ in the answer. Of course, for larget, many stationary paths
are summed over on the right-hand side of Eq.~6!. The rela-
tive error in ignoring subleading terms in the stationa
phase expansion foreach such path isO(\). So the frac-
tional error in the full answer is alsoO(\), provided that the
errors add no more coherently than the leading terms th
selves. This error comes from higher-order terms in the
tionary phase expansion.@In the presence of caustics, th
coefficient of theO(\) term can blow up in certain region
of space, eventually dominating the semiclassical evolut
Possibilities for handling this problem include uniformiz
tion or choosing a different basis~e.g., a Gaussian basis! for
performing the semiclassical calculation. To avoid these
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rious difficulties we will deal throughout this paper with sy
tems that are caustic-free in the chosen basis.#

For systems on a compact classical phase space, pos
and momentum values are of course labeled by discrete
tegers, so strictly speaking the notion of stationary ph
integration is not well defined. To make sense of the se
classical dynamics, one must rewrite the sums over topol
cal classes~winding numbers! using the Poisson summatio
formula, and evaluate the resulting integrals by station
phase@11#. This produces a semiclassical propagator defi
only on a discrete position~or momentum! grid. However, in
the limit of small\ ~largeN!, the spacing between quantu
basis states vanishes, and the discreteness of the qua
basis ceases to be physically significant. This is true as l
as all quantum structures in phase space are ‘‘generic,’’ s
ing asA\ in both theq andp directions, while the spacing
Dq andDp scale as\. The error analogous to Eq.~6! that we
are interested in for a compact phase space is the differ
between performing a sum over intermediate channelsq8
and performing the correspondingintegral by stationary
phase. We can then write

A2t~ i ,k!5 (
j 50

N21

At~ i , j !At~ j ,k!1O~N23/2!. ~7!

Note that the error scales asN23/2;\3/2 because normaliza
tion ~probability conservation! requires that the actual matri
elements ofAt and A2t scale asN21/2;\1/2. The relative
error is scaling asN21;\. We now define a natural norm
for measuring the difference between two matrices~under
which a unitary matrix has norm 1!,

iA2Bi2[
1

N
tr~A2B!†~A2B!5

1

N (
i j

u~A2B! i j u2.

~8!

We then have

iA2t2~At!
2i25O~\2!, ~9!

whereas the matricesAt individually have norm of order
unity. Of course, the coefficient in front of theO(\2) de-
pends on the amount of nonlinearity in the underlying cl
sical dynamics. For example, the cat map given by Eq.~2! is
exactly linear, and produces a semiclassical dynamicsAt that
is exactly multiplicative. This, however, is not very interes
ing because in that caseAt is also equal to the exact quantu
dynamics Ut. For generic perturbing potentialsV(q) or
T(p), the semiclassical answer differs from the quantu
and in that case the number multiplying\2 will indeed be of
order unity.

The result in Eq.~9! is already quite promising. It tells u
that for small\, it is a very good approximation to compu
the semiclassical dynamics exactly for 10 steps and t
square the matrix instead of trying to do the exact calcula
for 20 steps. The former is a much easier problem to so
because the number of classical paths needed to compuAt
scales exponentially witht. Inspired by this, we ask to wha
extent we may approximate the exact time-t semiclassical
propagator for larget by dividing t into more and more
shorter time intervals. ReplacingAt by (At/M)M involves
ion
n-
e
i-
i-

y
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l-

ce

-

,

n
n
e

making an errorM21 times, each time approximating
stationary phase integration by exact multiplication. Assu
ing these errors add incoherently, and takingM to be large,
we then have

iAt2~At/M !Mi25O~M\2!. ~10!

One can also obtain this result by iterating the proced
indicated by Eq.~9! for M that is a power of 2.~In other
words, we expressAt in terms ofAt/2 plus an error term, then
At/2 in terms ofAt/4 plus another error term, etc.! However,
we need to be careful about the assumption of incohe
accumulation of errors. Because the Hilbert space is fin
dimensional, eventually we must consider interference
tween different error terms. To see this in our formalism,
B5At/M andC5(At)

1/M. ~Although theM th root of a ma-
trix is in general an ambiguous quantity, here there is
ambiguity in what we mean by the matrixC: we simply
choose that root which is closest toB.! Now the quantity that
we are interested in isiCM2BMi2. Let e[C2B. To lowest
order ine,

iCM2BMi25ieBM211BeBM221¯1BM21e1O~e2!i2.
~11!

Now we work in the basis in whichB is diagonal, and write
e as the sum of its diagonal and off-diagonal parts in t
basis. The diagonal part ofe commutes throughB, giving a
coherent contribution from theM terms in the sum. The
off-diagonal part leads to an incoherent contribution beca
the eigenphases ofB are generic. So we obtain for the basi
independent norm

iCM2BMi25O~M ieoff-diagi2!1O~M2iediagi2!

1O~M2ie2i2!1¯ . ~12!

Now as long as the errors in the stationary phase approxi
tion are notpreferentiallydiagonal~i.e., not in general tend-
ing to multiply the exact answer!, the weight of the matrixe
that is on the diagonal is a fraction 1/N;\ of the total
weight of e. Noting from Eq.~9! that iei25O(\2), we see
that iediagi25O(\3). Furthermore, for the values ofM that
we are going to consider~up to the Heisenberg timeTH
;\21!, terms higher order ine @e.g.,O(M2\4)# can be ig-
nored. So we obtain

iAt2~At/M !Mi25O~M\2!1O~M2\3!, ~13!

valid for M<O(\21).

C. Heisenberg time dynamics

In particular, let us consider what happens at the Heis
berg timet5TH;O(\21) ~computing the semiclassical dy
namics to times longer than this will not produce interest
new information because individual eigenstates and eig
values will already have been resolved!. Let TQ be the
‘‘quantization time,’’ the time for which we will compute the
semiclassical propagatorATQ

exactly. First, letting M

5t/TQ , we can rewrite Eq.~13! as
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iAt2ATQ

t/TQi25OS t\2

TQ
D1OS t2\3

TQ
2 D . ~14!

Then by the Heisenberg timet5O(\21), we accumulate an
error

iATH
2~ATQ

!TH /TQi25OS \

TQ
D1OS \

TQ
2 D . ~15!

The above formula is expected to hold for allTQ>1,
where classical paths exist connecting any two coordin
points. If we apply the result to the caseTQ51, which char-
acterizes the one-step Bogomolny propagator, we find

iATH
2~A1!THi25O~\!. ~16!

So one result of the above calculation is that for smo
one-dimensional kicked systems~or for two-dimensional
Hamiltonian systems, where the scaling of the density
states works identically!, in the absence of caustics the exa
semiclassical propagator deviates from the iteration of
one-step dynamics only by an error term of orderA\, by the
Heisenberg time. How does this propagation relate to
exact quantum dynamics? For a single time step we kn
that the relative error between semiclassical and quan
amplitudes scales as\, so

iA12Ui25O~\2!. ~17!

Following a line of reasoning completely analogous to
one that took us from Eq.~9! to Eq. ~16! ~i.e., noticing that
off-diagonal terms in the error add incoherently, etc.!, we
find

i~A1!TH2UTHi25O~\!. ~18!

Now combining this with Eq.~16! we obtain a relation be
tween the exact semiclassical and exact quantum answe

iATH
2UTHi25O~\!. ~19!

Thus, in the absence of discontinuities and caustics,
semiclassical approximation is expected to do quite a g
job in approximating the quantum dynamics all the way o
to the Heisenberg time~in two dimensions, that is—in thre
dimensions the same analysis leads to the conclusion tha
semiclassical approximation is marginal at the Heisenb
time!.

But there still is a difference between the long-time sem
classical and quantum behavior, implying also a differen
between the corresponding eigenvalues and eigenst
These corrections arise from ‘‘hard quantum’’ effects, tho
beyond the stationary phase approximation. To be able
separate these from those effects that are purely semicl
cal, one needs to be able to computeAt explicitly for t
;TH , to a better approximation than that given by the ex
quantum mechanics, Eq.~19!. Iteration of the one-step sem
classical propagatorA1 will not do, since it differs from the
true semiclassical propagation as much as from the quan
So we proceed to consider a quantization timeTQ@1. From
te

h
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e

e
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e

:

e
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the
rg
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e
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Eq. ~15! we see that iteration ofATQ
comes much closer to

the exact semiclassics than the difference between the l
and quantum mechanics.

i~ATQ
! t/TQ2Ati2!iAt2Uti2 ~20!

for t;TH . This implies

i~ATQ
! t/TQ2Ati2!i~ATQ

! t/TQ2Uti2, ~21!

and thus iteration ofATQ
gives us an answer much closer

At than toUt, allowing us to see how the long-time sem
classical dynamics differs from the quantum dynamics, wi
out the need for doing an exponentially large amount
work. The approximation is a controlled one, and one c
keep increasingTQ until the desired level of convergence
the exact semiclassics is reached.

These ideas, extended properly to quantization of n
compact phase spaces, can be used for example to se
namic semiclassical localization without having to sum e
plicitly over a number of classical paths that is exponentia
the localization time. The results are presented in a comp
ion paper@9#, and address a long-standing question in
literature over whether dynamic localization is a semiclas
cal or hard quantum phenomenon.

III. NUMERICAL TESTS

We proceed now to justify numerically the powe
counting arguments presented in the preceding section.
system we will use is the kicked system of Eq.~1!, with m
5n51, and V(q)52„K/(2p)2

…sin 2pq. This can be
thought of as a standard map~kicked rotor! with an extra
inverted harmonic oscillator potential2 1

2 q2, or as a sinu-
soidal perturbation of the@1 2

1 1# cat map.T(p), the perturba-
tion of the quadratic kinetic term, is set to zero for simplicit
Also for simplicity, periodic boundary conditions, with n
phases, are imposed, i.e.,e05e150. The caustic-free condi
tion requires kick strengthuKu,1. The system is then guar
anteed to satisfy the Anosov property, as explained in
discussion following Eq.~3!. We chooseN5256 to be the
dimension of the Hilbert space. This is well in the semicla
sical regime, and large enough so that a direct summatio
classical paths to the Heisenberg time~there are 3256 of
them! is clearly not practical.

We then fix a value ofK, at K50.5, and compute the
matrix elements of the semiclassical propagator betw
quantum states in the momentum basis~using p is natural
because we are thinking of this as a kicked system; a
working in momentum space leads naturally into the study
dynamical localization!. Exact semiclassical matricesATQ

are computed for quantization timesTQ51¯8, using the
Gutzwiller–Van-Vleck expression, Eq.~5!. The convergence
of the iterative approximation can then be investigated.
first compute the quantityi(ATQ

) t/TQ2(A8) t/8i2 for TQ

51,3,5,7, and for a range of timest that extends beyond th
Heisenberg timeTH5256. As explained above, the exa
semiclassical propagator for times of orderTH cannot be
computed exactly, so we use the difference between appr
mations at different values ofTQ as a measure of conver



e

g
a
ch
io

tu
e

n

d

n
t

Th
ha

F

io
la

l
e

o

r-

-
ient

-

er
of

-
in

-

be-

tain
ator

it

s
a

,

h
r

us

per
,

er

Eq.

2988 PRE 58L. KAPLAN
gence asTQ→`. At the end of the next section, we will se
an example of a numerical test for moderate timet, where
exact semiclassical calculation is in fact possible, thou
very time consuming. There, approximation techniques
explicitly shown to produce a very good answer with mu
less effort. We assume errors in successive approximat
are uncorrelated, i.e.,

iATQ

t/TQ2A
T

Q8

t/TQ8 i2'iATQ

t/TQ2Ati21iA
T

Q8

t/TQ8 2Ati2. ~22!

For comparison purposes, the difference with the quan
dynamics iUt2(A8) t/8i2 is also computed. All these ar
plotted as a function of timet in Fig. 1. From top to bottom,
the quantities plotted are the squared differences betwee
eight-step iterated semiclassicsA8

t/8 and~i! the one-step iter-
ated semiclassicsA1

t , ~ii ! the quantum mechanicsUt, ~iii !
the three-step iterated semiclassicsA3

t/3 , ~iv! the five-step
iterated semiclassics, and finally~v! the seven-step iterate
semiclassics. Each set of points is also fitted to a function
the format1bt2, as suggested by Eq.~14!.

We notice first of all that the three-step, five-step, a
seven-step approximations come progressively closer to
eight-step approximation that is our basis of comparison.
differences between all these are significantly smaller t
that between any of these and the quantum dynamics.
nally, the one-step iterated approximation does a~relatively!
poor job of reproducing the long-time semiclassical behav
~however, the difference between it and the other calcu
tions is still small, due to the smallness of\!. Consistent with
the prediction of Eqs.~14! and ~22!, all the curves are wel
fitted by the sum of a linear and quadratic function of tim
Furthermore, at least forTQ.3, the linear term is seen t
dominate for times up to the Heisenberg time (TH5N
5256 in this calculation!. Thus, to understand the conve

FIG. 1. Convergence to long-time semiclassical behavior w
increasing quantization timeTQ . A long-time calculation withTQ

58 is used as the reference. From top to bottom, the five set
data represent the squared difference between this calculation
~i! the iterated one-step semiclassics,~ii ! the quantum mechanics
~iii ! the three-step iterated semiclassics,~iv! the five-step iterated
semiclassics, and~v! the seven-step iterated semiclassics. T
Heisenberg time isTH5256. Each curve is fit to the sum of a linea
and quadratic function of time, in accordance with Eq.~14!.
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gence of the iterative method forTQ@1, it is sufficient to
look at the behavior of the linear term in Fig. 1.

This is in fact done in Fig. 2. For eachTQ , we find the
numerical value ofa(TQ) that fits

iATQ

t/TQ2A8
t/8i25a~TQ!t1b~TQ!t2. ~23!

In Fig. 2, the quantitya(TQ) is plotted vsTQ , using pluses
for N5256 and crosses forN5128. However, forTQ51,
the difference between thequantumdynamics and the eight
step iterated semiclassics is plotted, i.e., the linear coeffic
of iUt2A8

t/8i2, not iA1
t 2A8

t/8i2. The latter value is off
the scale in the figure, being 3031027 for N5256 and
11531027 for N5128 ~notice that this error, though rela
tively large compared to those obtained for biggerTQ , still
has the right\2 dependence!. From Eqs.~14! and ~22!, we
predict

a~TQ!5c\2S 1

8
1

1

TQ
D , ~24!

for TQ@1, wherec is an undetermined constant of ord
unity. This predicted behavior fits the observed values
a(TQ) quite nicely, withc50.29. The resulting curves, fol
lowing Eq.~24!, are plotted in Fig. 2. We see that the error
the iterative approximation indeed scales as\2 per time step,
leading to an error of order\ by the Heisenberg time. Fur
thermore, the error goes to zero asTQ@1, in the predicted
manner, and is already much smaller than the difference
tween the quantum mechanics and the semiclassics byTQ
53.

IV. EFFECTIVE ONE-STEP LONG-TIME PROPAGATOR

We have seen in the preceding sections how to ob
convergent approximations to the semiclassical propag

h

of
nd

e

FIG. 2. Convergence of the linear coefficients in the previo
figure ~error per time step!, with increasing quantization timeTQ .
From left to right, the four data points measure the divergence
unit time of theTQ58 calculation from~i! the quantum mechanics
~ii ! the three-step semiclassical approximation,~iii ! the five-step
approximation, and~iv! the seven-step approximation. The upp
and lower sets of points correspond to Heisenberg timesN5128
andN5256, respectively. Theoretical curves corresponding to
~24!, with c50.29, are drawn through the data.
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for long times, including times beyond the Heisenberg tim
This dynamics can now be Fourier transformed to obt
local densities of states for various initial wave packets, a
from these the eigenstates and eigenvalues could be
tracted. In particular, the semiclassical spectrum can be
tained by tracing over the Fourier transformed semiclass
evolution. The quantization timeTQ can be increased unt
the desired level of convergence is reached, and the ei
states and eigenvalues obtained in this way can finally
compared with those of the quantum matrix.

This, however, is a rather tedious process, requiring
approximate semiclassical propagator to be evaluated
many values oft, from short times to times well beyondTH .
Moreover, if we settle on a fixed quantization timeTQ , and
computed all long-time dynamics using it, we will finall
obtain nothing more than the eigenstates and eigenvalue
the matrix ATQ

. So clearly the sensible thing to do is

diagonalizeATQ
directly for a range of values ofTQ and

check for convergence asTQ@1. Unfortunately, a technica
difficulty arises here. Eigenstates of the true dynamics~quan-
tum or semiclassical! with eigenphases separated appro
mately by an integer multiple of 2p/TQ may get mixed with
each other in the diagonalization ofATQ

, preventing one
from extracting the true eigenstates. This behavior appea
be generic~it does not happen inA1 due to level repulsion in
the presence of chaos!. One can try to get around this diffi
culty by comparing the eigenstates ofATQ

for a range ofTQ ,
and selecting those that come closest to agreeing for se
values ofTQ . Such a procedure does in fact appear to c
verge to a reasonable set ofN eigenstates, and it might b
expected to produce results comparable to those that w
be obtained by Fourier transforming long-time dynam
produced by using several matricesATQ

. ~For example, we

could approximateA100'A9
4A8

8, A101'A9
5A8

7, etc. This pro-
cedure is in fact useful for evaluating long-time propagat
at arbitrary timest, including those that are not divisible b
a suitable value ofTQ .!

However, a simpler solution now presents itself. Giv
that we believeATQ

have similar eigenstates for all value

TQ@1, these must also be the eigenstates of

DTQ
[ATQ

ATQ21
21 , ~25!

for example. No mixing of eigenstates should arise inDTQ

~because of level repulsion!, and moreover this method ha
the advantage that the semiclassical eigenvalues can be
off directly, without having to decide which root of an eige
phase must be taken in each case.TQ is then increased, an
convergence to the ‘‘true’’ semiclassical eigenstates and
genvalues is obtained~convergence is expected based
what we know about the convergence of the dynamics fr
the two previous sections!.

In fact, it is sufficient to look at convergence of theDTQ

matrix. In Fig. 3, the results of such an analysis are p
sented, for the same system as that studied numerical
Sec. III. Here a Heisenberg time~matrix size! N564 is used.
We plot the squared normiDTQ

2D9i2 for 2<TQ<6 ~for

TQ.6, numerical errors begin to play a role in the err
analysis, however the downward trend continues
.
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5.4310212 for the difference betweenD8 and D9!. For
comparison, we also measureiA12D9i254.631025 and
iU2D9i256.231026.

Remarkably, we find exponentially fast convergence w
the quantization time, in marked contrast with the power-l
convergence obtained previously for the dynamics. The d
agree well with the exponential form\2 exp(8.123.2TQ),
which is also plotted in Fig. 3. This exponential behavior
consistent with analogous results seen in cycle expan
methods. How can it be reconciled with the power-law b
havior seen in Eq.~13!? Let

D![ lim
TQ→`

DTQ
. ~26!

Now clearlyAt5D!
t (11e t), wheree t is a correction falling

off exponentially witht, would satisfy the finding@upon sub-
stitution into Eq. ~25!# that DTQ

converges exponentially
quickly. However, it would not be consistent with Eq.~13!,
which requires power-law behavior for the dynamics, a
which we have seen verified numerically. The two resu
can be reconciled if we notice that exponential converge
of DTQ

to D! only requires

At5D!
t ~11e!1e t!. ~27!

Here ie ti25O„\2 exp(2at)…, while e! is a t-independent
matrix with normie!i25O(\2). a is a constant associate
with the mixing time scale of the underlying classical d
namics. Now when taking the productDt[AtAt21

21 , the e!

contribution cancels, producingD! plus a time-dependen
correction that goes asO„\2 exp(2at)…. However, if we
compareAt with At/M

M using Eq.~27!, wheret and t/M are
assumed for simplicity to be large, we notice that the lat
quantity has an extraM21 term of ordere! compared with
the exact semiclassicsAt . This is consistent with what we
found in Eq.~11!, and leads to power-law errors as in E
~13!. For example, from Eq.~27! we seeA2t2At

25O(e!), in
agreement with Eq.~9!.

Our interpretation of Eq.~27! is that e t is an error that
results from concatenating short classical paths to prod
long ones. It is thus analogous to the errors obtained in

FIG. 3. Exponential convergence of the quantityDTQ

5ATQ
ATQ21

21 towards theeffectiveone-step long-time semiclassica
propagatorD! @Eq. ~26!#. Data provided forD2¯D6 ; D9 is used
as the reference.
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proximating long periodic orbits by short ones in cycle e
pansion methods.e! , on the other hand, is an error in som
way associated with projecting the full semiclassical dyna
ics for any timet onto quantum initial and final states. Th
error is therefore independent of the time after which su
projection is performed. It should be possible to make a c
nection between this effect and what happens in the bak
map, for example, when a slightly higher-dimensional eff
tive semiclassical space~in which the semiclassical dynam
ics is almost exactly iterative! must be projected ontoN vec-
tors to produce quantities that can be compared w
quantum matrix elements@6#. One would also like to under
stand better the parametrization ambiguities in the defini
of D! ande! . For example, we could have written

At5~11 ẽ!1 ẽ t!D̃!
t ~28!

as an alternative to Eq.~27!. This would be natural if we had
looked at the quantityATQ21

21 ATQ
@5(A2TQ

A12TQ

21 )†# in-

stead ofDTQ
as defined above.

In any case, we see that the matrixD! is key to under-
standing the long-time semiclassical dynamics. This ma
is an effective one-step propagator that can be used to ob
the semiclassical propagator at timet11 with exponential
accuracy, given the propagator for timet. It thus gives to us
in a trivial way the stationary properties of the long-tim
semiclassical evolution.

To show how the factorization given in Eq.~27! can be
used in practice, we take the kicked map studied earlie
this section and compute an approximation toA9 by evalu-
ating

A9'D!
9~11e!!5D!

4D!
5~11e!!'D!

4A5'~A5A4
21!4A5 .

~29!

All errors e t in Eq. ~29! are exponentially small in the rel
evant timest: an error of sizee9 is made in the first approxi
mation, and errors of sizee5 ,e4 in the third and fourth steps
the latter of course dominating the error in the final answ
Notice that we need to evaluate the semiclassical dynam
At exactly at two values oft to obtain the two matricesD!

and e! . After computing the semiclassical propagatorA9
exactly, we find~factoring out the\ dependance! that the
error i(A5A4

21)4A52A9i2 is 0.000 03\2. In the same units
we find the erroriA5A42A9i2 to be 0.5\2, still not bad, but
lacking the exponential error suppression. For comparis
the difference between the exact semiclassical 9-step pr
gatorA9 and the quantum mechanicsU9 is 3.1\2, while the
difference from the 9-times iterated one-step propaga
(iA1

92A9i2) is 89.5\2. ~It is interesting to note just how
poorly iteration of the one-step semiclassical propagatorA1
does in reproducing the correct longer-time semiclassical
havior.!

Of course, this procedure can now be extended to tim
much longer than 9, where exact evaluation of the semic
sics is clearly not practical. Six digits of accuracy in lon
time semiclassical propagation~beyond what is expecte
merely from the smallness of\! are obtained with only a
modest amount of work.
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V. CONCLUSION

We have seen in the preceding section that long-ti
semiclassical behavior is given to exponentially good ac
racy by iteration of an effective matrixD! that is different
from both the quantum evolution matrixU and the one-step
semiclassical propagatorA1 . In fact, the one-step semiclas
sical propagator contains essentially no information ab
long-time semiclassical dynamics, except of course for
similarity based on both being related to the quantum evo
tion. However, knowing the semiclassical dynamics
timesTQ@1 ~measured in units of the shortest periodic or
time! enables one to deduce stationary semiclassical be
ior, including dynamical information to the Heisenberg tim
and beyond. Why is long-time semiclassical information e
hausted atTQ@1? In periodic orbit methods, one expec
knowledge of long-time dynamics to be contained in orb
of length up to the mixing time (; lnN), at which point
phase space has been explored at the scale of Planck’s
stant. Longer orbits can be produced from these if we all
smearing over sub-Planck coordinates. TheO(N) periodic
points at the mixing time containO(N2) pieces of informa-
tion if we record where each lies in relation to some quant
basis. Similarly, the full quantum theory can of course
described by anN3N matrix. The information required to
obtain the semiclassical theory is only slightly bigger, sc
ing in the same way withN. We note that collecting and
iterating semiclassical information after one time step o
scale of 1/N allows one to resolve periodic orbits up to th
mixing time, while collecting after a slightly longer exac
evolution is equivalent to having knowledge of periodic o
bits longer than the mixing time, where exponential conv
gence is expected.

The results obtained here may shed light on the accur
of the Gutzwiller trace formula in the energy domai
Though the relationship between the two approaches
nontrivial one~the trace formula focusing onperiodicorbits,
and thus corresponding to a stationary phase integratio
the dynamics!, one may hope that further progress may
made in bringing together dynamical and periodic or
methods. In any case, we have already seen that the sta
ary phase integration implicit in the trace formula isnot nec-
essary for obtaining sensible semiclassical eigenvalues
eigenstates, which compare well with those of an exact qu
tum calculation.

More work is also needed in bringing together the a
proximation methods discussed here with other semiclass
consolidation techniques, such as those that have been
quite successfully for the baker’s map@6#.

These iterative methods may in addition provide a n
perspective on the long-standing questions of classical p
odic orbit correlations and of how semiclassical dynam
can reproduce Heisenberg-time quantum behavior@13#. All
such issues become much less mysterious once we re
that long orbits are given to a good approximation by co
catenating shorter classical trajectories. Thus, long-t
semiclassical evolution can produced-function peaks in the
spectrum for essentially the same reason as the quan
mechanical evolution, i.e., it is given~approximately! by it-
eration of an~almost! unitary finite matrix.

Many of the findings may be modified in the presence
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discontinuities, strong diffraction, and caustics, whe
classical-quantum correspondence is more poorly un
stood. In particular, the proliferation of caustics may be
pected to cause a divergence between semiclassical
quantum dynamics well before the Heisenberg time
reached@4#. In these situations, a better understanding
iterative dynamical methods may still allow one to follow th
semiclassical dynamics past the scale at which this di
gence occurs, and to see explicitly when and in what way
semiclassical approximation breaks down~and what correc-
tions to the semiclassical formulas may be necessary to
store long-time correspondence!. In some cases, certai
qualitative features of the quantum dynamics~e.g., dynami-
cal localization@9# and level spacing statistics! may be well
dt

r,
,

e
r-
-
nd
s
f

r-
e

e-

reproduced by the long-time semiclassical dynamics, e
when detailed correspondence between the propagators
been lost.
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