PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 1998

Multiplicative semiclassical dynamics and the quantization time
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We study smooth, caustic-free, chaotic semiclassical dynamics on two-dimensional phase space and find that
the dynamics can be approached by an iterative procedure that constructs an approximation to the exact
long-time semiclassical propagator. Semiclassical propagation all the way to the Heisenberg time, where
individual eigenstates are resolved, can be computed in polynomial time, obviating the need to sum over an
exponentially large number of classical paths. At long times, the dynamics becomes quantumlike, given by a
matrix of the same dimension as the quantum propagator. This matrix, however, differs both from the quantum
and the one-step semiclassical propagators, allowing for the study of the breakdown of the semiclassical
approximation. The results shed light on the accuracy of the Gutzwiller trace formula in two dimensions, and
on the source of long-time periodic orbit correlatio[81063-651X98)12208-(

PACS numbes): 05.45+b, 03.65.Sq

[. INTRODUCTION guantum evolution because of their lineaiity homogeneity
. . . . in the case of constant negative curvajumaking them less
Semlclass!cal_ methods have a long hls_tory dating back tc|)nteresting as a testing ground for the general applicability of
the very beginnings of quantum mechanics, and have pro-_ _. . ) .
. 2 : . I “semiclassical methods. Cycle expansion methods, which use
vided insight into many properties of quantum-mechanica ; . ) )
svstems. These methods provide a bridge. expressin uarﬁ]-e symbolic dynamics of the underlying classical system to
y ' P ge, exp 949 express long periodic orbits in terms of shorter ones, have

tum behavior in terms of classical paths and their oMy an very important in this regafa].

sponding actions. In integrable systems, the connection be- However, this still leaves open the question of the prop-

tween quantum and classical behavior is well understoodjies of the semiclassical dynamics in the time domain.
through Einstein-Brillouin-Kelle(EBK) quantization tech-  yy,ch important work here has been done in systems like the
niques, which lead to an intuitive understanding of the quansiadium billiard and the baker’s mé&]. Numerical evidence
tum properties of these systems. For a nonintegrable systerjgg produced, and theoretical arguments given, showing
it is not nearly as clear how much of the quantum behaviogjearly that the semiclassical approximation works well past
(e.g., spectrum, eigenstates, long-time dynamics, transporthe mixing time of the system, where multiple stationary
can be understood via semiclassical methods. One would likgaths contribute to the quantum propagator, and where the
to be able to separate out those features of the quantum bpurely classical approximatiofwithout interference effects
havior that can thus be explained in terms of interferencédreaks down completely. This was initially somewhat sur-
between classical paths from the “hard quantum effects, prising, because after the mixing time the classical dynamics
such as diffraction and tunneling. begins generating structures in phase space on scales smaller
Although the Van-Vleck formula describing short-time than Planck’s constant, while the quantum dynamics washes
quantum behavior in terms of classical paths has been arourdit any information on these scales. Thus the semiclassical
for many years, it is only starting with the work of approximation tries to follow the guantum propagator by
Gutzwiller [1] that it has been possible to try to understandsumming over an exponentially large number of paths. This
long-time quantum properties in terms of classical behaviorexponential proliferation of classical paths prevents one from
Much insight is given by the Gutzwiller trace formula in the performing meaningful long-time quantum-semiclassical
energy domain, which relates the quantum spectrum to a suesomparisons for small values @f (large Heisenberg time
over classical periodic orbits. However, the formula is a for-The fact that the quantum propagator effectively smears out
mal expression, which needs to be resummed to get conveall of the sub# structure in phase pace, and thus contains an
gence in the limit where more and more orbits are includecamount of information that scales only as a power lavi,in
[2]. Furthermore, in practice summing over long orljdees  suggests that some such reduction may also be possible in
with period comparable th times the density of states of the the semiclassical calculation. This is important becaase
system, so that individual eigenstates can be respigegbt  priori it is not at all obvioud(i) that the long-time semiclas-
feasible, because the number of classical orbits grows expaical dynamics converges in the sense of having well defined
nentially with time in a chaotic system. Special cases aretationary states at the Heisenberg time, or for that méijer
known for which the long-time semiclassical dynamics canthat in those cases where the semiclassical dynamics does
be computed exactly, e.g., the cat map and geodesic flows @onverge, what it converges to actually approximates the
surfaces of constant negative curvature. However, the semguantum dynamics, stationary states, etc. The breakdown of
classical evolution for these systems is in fact the same as tteemiclassical validity, in particular in the presence of diffrac-
tion, discontinuities, and caustics, is also a somewhat contro-
versial issue that has been difficult to address in practice
*Electronic address: kaplan@physics.harvard.edu because of the computational obstacles.
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A key reason for the finiteness of long-time information semiclassical propagation. Detailed comparisons become
in the quantum case is the multiplicativity of the quantumeasily possible between quantum and semiclassical spectra,
propagator. In other words, the long-time dynamics can beigenstates, long-time transport, and other properties.
obtained by simply iterating the short-time propagatiora- Here we apply these ideas to a somewhat different class
trix multiplication in the case of a finite-dimensional Hilbert Of systems, ones that lack the somewhat unpleasant “cut and
space. The semiclassical dynamics does not share this prop?aste” discontinuities of the baker's map, which are not
erty because concatenations of classical paths in general prBlecewise linear, and which are also more generic in the
duce paths that areot classical. Stationary phase integrals Sense of constituting a large family and allowing for continu-
must be performed to obtain the long-time semiclassicaPUsS perturbations. These systems, namely smooth automor-
propagator from shorter steps, and the number of stationafjhisms of the toruge.g., kicked maps and perturbed cat
phase points grows exponentially with time. An interestingMaps lack a special symbolic dynamics and have no pre-
way to make the semiclassical dynamics multiplicative byferreéd basis, making them a good test case for the ideas
extending the space on which the multiplicative operator act@utlined above. An important constraint is that we shall be
has been described by Cvitanowind Vattay[5]. It has also  100king exclusively here at caustic-free, purely chaotic sys-
been seen that in the special case of the baker's map, tHgms. Caustics, discontinuities, and mixed phase space are all
long-time dynamics can be computed with good accuracy ifmportant subjects of inquiry and will be looked at in a future
polynomial time using the Heisenberg uncertainty principleP@per. It should be pointed out that the procedure presented
and the exponential decay of time correlations in chaotid? What follows does not make use of detailed knowledge
systemg6]. These method&@f which three are known to the about the system at hand. In this way, it may be more robust
authoy effectively collect together all contributions from than, for example, the cycle expansion methods in periodic
classical paths that come together on scales much small@fPit theory. Because no explicit use is made of periodic
than #. Semiclassical amplitude thus collected can then b@'bits, it need not be the case here that long periodic orbits
propagated again, thus making the resulting dynamics multi€an be expressgd in terms of short periodic orbits, for ex-
plicative. All the methods, however, made use of the simplédmple. All that is needed is that long paths can be con-
symbolic dynamics of the baker's map and its very Speciaptructed out of shqrt paths, something that is true in all but
structure in position and momentum space. Some of théhe most pathological cases. _ _
ideas of consolidation on subscales, however, may yet ~ The rest of this paper is organized as follows: we first
turn out to be fruitful in analyzing more generic systems,Priefly review the classical, quantum, and semiclassical dy-
with no such special structure. namics of.the systems und_er c_on3|derat|on. The iteration of

In this paper, we take a somewhat different approach t@emlc'lassmal propagators is dlscussgd, a}nd error estimates
the problem, inspired by the fact that in the baker's map wearé given as a function of propagation time, quantization
have found that a good approximation to the long-time semitime, and#, with particular emphasis on Heisenberg-time
classical dynamics could be obtained even if one periodicallyPropagation. Numerical tests follow, showing the conver-
projects the higher-dimensional semiclassical vector onto thgence of the iterative approximation as well as measuring the
N-dimensional quantum space. In other words, the true semfi€viation from exact quantum and one-step iterative results.
classical dynamics is evaluated exactly Tog steps.(Tq is Then the “effective one-step semiclassical propagator” is
called the quantization time, and can be thought of as théiscussed, which with exponential accuracy describes long-
time domain analog of th@* parameter in the spectral time semiclassical propagation, and which differs from the
theory of Bogomolny and Keatin§7]. One should note, duantum and one-step semiclassical matrices. Again, nu-
however, that in periodic orbit theory, the critical tirfe merical findings are presented. Finally, the conclusion treats
should scale as the mixing time, logarithmically with ~ SOMe general questions and addresses possible applications

whereas our scal@ is of order 1 in units of the shortest and extensions of the results obtained.

periodic orbit. See the discussion in Sec) Matrix elements In a companion paper to this artiJe], the methods are
are then taken between quantum states, producing a matfkiended and applied to the study of semiclassical dynamical
of the same dimension as the quantum propagator. This mégcalization in classically diffusive systems, showing that in

trix is then iterated to produce an approximation to the |ong_fact interference between classical paths is sufficient to un-

time semiclassical behavior. Now fdfo=1 this is very derstand the end of quantum diffusion in these systems.
reminiscent of Bogomolny’s approach to quantizati8h It

should be noted, however, that fdi,=1, this procedure Il. THEORETICAL ANALYSIS

doesnot produce anything at all resembling the long-time
semiclassical dynamics. In fact, for smal, one gets closer
and closer to the exaquantumdynamics, as can be seen by  We will consider smooth, chaotic classical dynamics on a
taking the limitTo— 0 and recovering the Feynman form of compact phase space, satisfying the Anosov property and
the quantum propagator. This is good if one just wants tdree from caustics in the coordinate system of intergidte

know the quantum answer, but not if one is interested inAnosov property means that at each phase space point the
understanding how quantum dynamics is affected by classtangent space can be decomposed into an exponentially ex-
cal properties, in the sense, for example, of the Gutzwilleppanding linear subspace and an exponentially contracting lin-
trace formula. What is interesting here is that Tep>1, but  ear subspace. For two-dimensional phase spaces, there is one
still much smaller than the Heisenberg time, one can obtain expanding and one contracting direction at each poira.

good approximation to the actual long-timemiclassicatly-  be specific, let us take the following family of discrete area-
namics, and thus study the validitgnd breakdownof the  preserving maps on a torus:

A. Hard chaotic dynamics on a torus
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p—p=p+mg-V'(q)mod 1, erties (eigenstates and eigenvalues the system. All this
can be performed in polynomial time, and the total amount
(1) of information contained in the quantum system is of order
N2. In particular, all of the information is present in the

The above dynamics can be obtained from the stroboscop@N€-Step quantum propagator.
discretization of a kicked systefii0] with a kick potential

—3ma?+V(q) applied once every time step and a free evo- B. Semiclassical dynamics
lution governed by the kinetic tersdinp?+ T(p). Herem,n
are arbitrary integers, whil®/,T are smooth periodic func-
tions. The system can also be thought of as a continuo
perturbation of the linear systefoat map [11]

q—q=q-+np+T'(p)mod 1.

We now consider the long-time semiclassical dynamics as
iven by the Gutzwiller—Van-Vleck propagatdr] evaluated
etween quantum mechanically allowed states. In position

space, the propagator has the form

p—p=p+mamod 1, dr2

1 (?28_ , ’,t 1/2
~ Gs&q,q’,t):{ﬂ 2 ‘det(;(qTq/)
gq—g=np+(mn+1)gmod 1. 2 l i a9
The Jacobian of the transformation in Ed) is given by Xexp{isj(qf;q’,t) _ iT;Vi , (5)
1 m—V"(q)
J= n+T"(p) 1+[n+T"(P)I[m=V"(q)]] © where S; is the action for classical path the determinant

corresponds to the classical probability density for going be-
We notice that for given integems,n we can choose the tweenq andq’ via this path, and the phase is given by the
functionsV andT such that the quantitsn—V”(q) is strictly  action, corrected by the count of conjugate poinfs For
greater than O for ally and similarly forn+T”(p). (In  any given timet, this produces amNXN matrix A;. The
words, we ensure that the system everywhere looks locall§eémiclassical evolution must of course be evaluated in some
like an inverted harmonic oscillatafThis implies strict posi- ~ coordinate system, such as position or momentum, but once
t|V|ty of all four entries in the Jacobian matrixl a property the matrix has been constructed it can be rotated into any
that is of course preserved under iteration of the dynamicgluantum basis that one finds convenient. Being a matrix con-
Furthermore, positivity of both off-diagonal entries implies Necting quantum in and out statef, looks like a quantum
hyperbolicity, because it ensures det2. All such systems Object, but it is not unitary 4/A_;#1) and does not satisfy
therefore provide examples of hard chaos, being free of inmultiplicativity (A, #AAr). Thus it is nota priori obvi-
tegrable regions. To see that they are free of caustics in eith@us, for example, that the semiclassical evolution at long
position or momentum space, it is sufficient to note that thdimes converges to a well-defined set of eigenstates and ei-
two off-diagonal entries of the Jacobiamp(t)/dq(0) and  genvalues, i.e.A,~ep,, or whether such eigenvalues

dq(t)/op(0), always remain nonzero. and eigenstates, , ¢, have any connection with those of the
The quantization of kicked systems is straightforward andjuantum dynamics.
well-covered in the literatur¢10]. We take# so thatN Let us study the deviation from multiplicativity of the

=1/27# has an integer value. Then &hdimensional posi- semiclassical dynamics in a smooth chaotic system. We note
tion basis for the Hilbert space is given by;), whereq;  first that for semiclassical propagators in the time domain,
=(i+¢€p)/N, i=0---N—1. Similarly, the momentum space

basis is given bpr-), with allowed value;=(j + €1)/N,

j=0---N—1. ¢, form a family of possible quantization Am(Q",Q):f da’'A(q”,q")A(q",9), (6)
conditions (they correspond to phases associated with cir- s

cling the torus in thep andq directions, respectively The o . . )

two bases are related by a discrete Fourier transform. Th@here s, indicates that the equality holds only if the inter-

dynamics is now defined by the unitalyx N matrix mediate integration is performed by stationary phas. If
the integration is performed exactly instead of in the station-
(1 ., - ary phase approximation, we obtain a relative error of order
U=exp —i{znp°+ T(p) h # in the answer. Of course, for largemany stationary paths

are summed over on the right-hand side of &j. The rela-
(1 ., - tive error in ignoring subleading terms in the stationary
xexgi| ;ma —V(q) ar (4 phase expansion fogachsuch path isO(#). So the frac-
tional error in the full answer is als0(#%), provided that the
where each factor is evaluated in the appropriate basis, arerors add no more coherently than the leading terms them-
an implicit forward and backward Fourier transform has beerselves. This error comes from higher-order terms in the sta-
performed. As in the lineafcat map case, continuity of the tionary phase expansiofiln the presence of caustics, the
potential and kinetic term@nod#) requires thalN be chosen  coefficient of theO(%) term can blow up in certain regions
even, unless botm andn are even. The key point is thek  of space, eventually dominating the semiclassical evolution.
here is just a matrix, and the long-time quantum evolution ofPossibilities for handling this problem include uniformiza-
the system is given by matrix multiplication. Alternatively, tion or choosing a different basis.g., a Gaussian bagifr
the matrixU can be diagonalized to find the stationary prop-performing the semiclassical calculation. To avoid these se-
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rious difficulties we will deal throughout this paper with sys- making an errorM—1 times, each time approximating a
tems that are caustic-free in the chosen basis. stationary phase integration by exact multiplication. Assum-
For systems on a compact classical phase space, positidmy these errors add incoherently, and takMgto be large,

and momentum values are of course labeled by discrete irwe then have

tegers, so strictly speaking the notion of stationary phase

integration is not well defined. To make sense of the semi- A= (Aym)V?=0O(M#A?). (10)
classical dynamics, one must rewrite the sums over topologi-

cal classegwinding numbersusing the Poisson summation One can also obtain this result by iterating the procedure
formula, and evaluate the resulting integrals by stationaryndicated by Eq.9) for M that is a power of 2(In other
phase[11]. This produces a semiclassical propagator definegyords, we expresa, in terms ofA,, plus an error term, then
only on a discrete positiofor momentumgrid. However, in A, in terms ofA,, plus another error term, ejd-owever,

the limit of small (largeN), the spacing between quantum we need to be careful about the assumption of incoherent
basis states vanishes, and the discreteness of the quant@i@umulation of errors. Because the Hilbert space is finite-
basis ceases to be physically significant. This is true as longimensional, eventually we must consider interference be-
as all quantum structures in phase space are “generic,” scaween different error terms. To see this in our formalism, let
ing as\/ﬁ in both theq andp directions, while the spacings B=Aym andC=(At)1’M. (Although theMth root of a ma-

Aqg andAp scale agi. The error analogous to E(f) thatwe  trix is in general an ambiguous quantity, here there is no
are interested in for a compact phase space is the differenggnbiguity in what we mean by the matri@: we simply
between performing a sum over intermediate chanogls choose that root which is closestBo) Now the quantity that
and performing the correspondinigtegral by stationary e are interested in ifC" —BM|?. Let e=C—B. To lowest
phase. We can then write order ine,

N—-1
o o a3 [CM—BM|2=||eBM~1+BeBM 2+---+BM 1+ O(€?)[|%
Ax(il)= 2 AGLDAG K TONT. () 1D

Note that the error scales &5 32~#32 pecause normaliza- Now we work in the basis in whicB is diagonal, and write

tion (probability conservationrequires that the actual matrix € as the sum of its diagonal and off-diagonal parts in that

elements ofA, and A, scale asN™Y?>~#%Y2 The relative basis. The diagonal part @fcommutes througlB, giving a

error is scaling aiN~1~#. We now define a natural norm coherent contribution from thé terms in the sum. The

for measuring the difference between two matri¢esder  off-diagonal part leads to an incoherent contribution because

which a unitary matrix has norm),1 the eigenphases & are generic. So we obtain for the basis-
independent norm

1 1
_Rl2=— _eviA_Ry— — R |2
|A-BlP= G A-B)(A-B)=5 2 [(A-B);* |CM— BY2=O(M]| ot gagl) + O(M?| €5adl?)

(8) +O(M2[e?)+--- . (12)
We then have : . :
Now as long as the errors in the stationary phase approxima-
[Ay—(A)Y2=0(#?), (99  tion are notpreferentiallydiagonal(i.e., not in general tend-
ing to multiply the exact answgrthe weight of the matrix
whereas the matrices, individually have norm of order that is on the diagonal is a fractionNi+# of the total
unity. Of course, the coefficient in front of th@(#2) de-  Wweight of e. Noting from Eq.(9) that||e|>=0O(%?), we see
pends on the amount of nonlinearity in the underlying clasthat || e4ad?=0(#%°%). Furthermore, for the values dfl that
sical dynamics. For example, the cat map given by(Bpis  Wwe are going to considefup to the Heisenberg tim&,
exactly linear, and produces a semiclassical dynasjthat ~% 1), terms higher order i [e.g.,O(M?4:*)] can be ig-
is exactly multiplicative. This, however, is not very interest- nored. So we obtain
ing because in that cage is also equal to the exact quantum
dynamics U!. For generic perturbing potential¥(q) or [A— (Aym)M|?=0(M#A2)+ O(M?13), (13
T(p), the semiclassical answer differs from the quantum,
and in that case the number multiplyifig will indeed be of  valid for M<O(% ~1).
order unity.

The result in Eq(9) is already quite promising. It tells us
that for small#, it is a very good approximation to compute ) ) )
the semiclassical dynamics exactly for 10 steps and then In particular, let us consider what happens at the Heisen-
square the matrix instead of trying to do the exact calculatioPerg timet=Ty~O(#% ") (computing the semiclassical dy-
for 20 steps. The former is a much easier problem to solvé@amics to times longer than this will not produce interesting
because the number of classical paths needed to compute NeW information because individual eigenstates and eigen-
scales exponentially with Inspired by this, we ask to what Values will already have been resolyedet To be the
extent we may approximate the exact timsemiclassical ~duantization time,” the time for which we will compute the
propagator for larget by dividing t into more and more Semiclassical propagatoAr, exactly. First, letting M
shorter time intervals. Replacing, by (Ayw)™ involves  =t/Tq, we can rewrite Eq(13) as

C. Heisenberg time dynamics
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Eqg. (15 we see that iteration 04\TQ comes much closer to

the exact semiclassics than the difference between the latter
and quantum mechanics.

. (14

th?2 253
In-AaP-o| 7)ol 5

Then by the Heisenberg time=0(% 1), we accumulate an

error H(ATQ)UTQ—At||2<||At—Ut||2 (20)
T T2 i h for t~Ty. This implies
IAT,— (A1) He[*=0 770 7z (15
© (A7) Te—Ad2<|I(Ar ) Te— U, (21

The above formula is expected to hold for dlh=1, . . .
where classical paths exist connecting any two coordinat@d thus iteration oA gives us an answer much closer to
points. If we apply the result to the ca$g=1, which char- A than toU", allowing us to see how the long-time semi-
acterizes the one-step Bogomolny propagator, we find classical dynamics differs from the quantum dynamics, with-
out the need for doing an exponentially large amount of
AT, — (A TH|[>=0O(#). (16)  work. The approximation is a controlled one, and one can
keep increasing o until the desired level of convergence to

So one result of the above calculation is that for smootfhe exact semiclassics is reached. o
one-dimensional kicked systenisr for two-dimensional These ideas, extended properly to quantization of non-
Hamiltonian systems, where the scaling of the density of0mpact phase spaces, can be used for example to see dy-
states works identicallyin the absence of caustics the exactn@mic semiclassical localization without having to sum ex-
semiclassical propagator deviates from the iteration of thélicitly over a number of classical paths that is exponential in
one-step dynamics only by an error term of org@r, by the the localization time. The results are presented in a compan-
Heisenberg time. How does this propagation relate to thé®" Paper[9], and address a long-standing question in the
exact quantum dynamics? For a single time step we knoviterature over whether dynamic localization is a semiclassi-
that the relative error between semiclassical and quanturf@@! Or hard quantum phenomenon.
amplitudes scales ds so
. NUMERICAL TESTS

A —U|?=0(#2). 1 I .

lAs =Vl (A% (17 We proceed now to justify numerically the power-
Following a line of reasoning completely analogous to thecounting arguments presented in the preceding section. The

one that took us from Eq9) to Eq. (16) (i.e., noticing that ~ SyStem we will use is the kicked system of E), with m

_ _ _ 2 . .
off-diagonal terms in the error add incoherently, ptove ~ —N=1, and V(9)=—(K/(2m))sin 2mq. This can be
find thought of as a standard madkicked rotoy with an extra

inverted harmonic oscillator potentiat g2, or as a sinu-
[(A])TH—UTH|2=0(4). (18) spidal perturbatioq of_thﬁ,i 3] cat _map.T(p), the perturb_a:
tion of the quadratic kinetic term, is set to zero for simplicity.
Now combining this with Eq(16) we obtain a relation be- Also for simplicity, periodic boundary conditions, with no

tween the exact semiclassical and exact quantum answersPhases, are imposed, i.e= €,=0. The caustic-free condi-
tion requires kick strengthk|<1. The system is then guar-

|AT. —UTH[2=0O(%). (19 a_nteed to satisfy. the Anosov property, as explained in the
H discussion following Eq(3). We choose\N=256 to be the
dimension of the Hilbert space. This is well in the semiclas-

;rgrl:]?d ;rslsitQSI :bsfg)gemgog'issczrllﬂfds tgrljdo Cilijtset';s' Otg ical regime, and large enough so that a direct summation of
PP P d 9008 assical paths to the Heisenberg tirttaere are 3% of

job in approximating the quantum dynamics all the way OUtthem) is clearly not practical
to the Heisenberg timén two dimensions, that is—in three y P '

: : . . We then fix a value oK, at K=0.5, and compute the
dimensions the same analysis leads to the conclusion that the__ . . )
. . LI ) . matrix elements of the semiclassical propagator between
semiclassical approximation is marginal at the Heisenber

time) %uantum states in the momentum ba&ising p is natural

But there still is a difference between the long-time :semi-because we are thinking of this as a kicked system; also

classical and quantum behavior, implying also a differencé’vork"ﬂ'g in momentum space leads naturally into the study of

between the corresponding eigenvalues and eigenstateds){n""m'Cal localizatioh E_X""(_:t semclassmal matr_lce@TQ
These corrections arise from “hard quantum” effects, thosed"® computed for quantization timég=1---8, using the
beyond the stationary phase approximation. To be able t&utzwiller—Van-Vieck expression, E(6). The convergence
separate these from those effects that are purely semiclas§t the iterative approximation can then be investigated. We
cal, one needs to be able to compue explicitly for t  first compute the quantlt)ﬂ(ATQ)”TQ—(As)t/8||2 for Tq
~Ty, to a better approximation than that given by the exact=1,3,5,7, and for a range of timéghat extends beyond the
guantum mechanics, E¢QL9). Iteration of the one-step semi- Heisenberg timely=256. As explained above, the exact
classical propagatok; will not do, since it differs from the semiclassical propagator for times of ordBg cannot be
true semiclassical propagation as much as from the quantumomputed exactly, so we use the difference between approxi-
So we proceed to consider a quantization tifige>1. From  mations at different values ofy as a measure of conver-
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FIG. 1. Convergence to long-time semiclassical behavior with  FIG. 2. Convergence of the linear coefficients in the previous
increasing quantization timég . A long-time calculation withTq figure (error per time step with increasing quantization timeg .
=8 is used as the reference. From top to bottom, the five sets dfrom left to right, the four data points measure the divergence per
data represent the squared difference between this calculation andhit time of theTo=8 calculation from(i) the quantum mechanics,
(i) the iterated one-step semiclassi(ig) the quantum mechanics, (ii) the three-step semiclassical approximati¢ii) the five-step
(ii) the three-step iterated semiclassi@ig) the five-step iterated approximation, andiv) the seven-step approximation. The upper
semiclassics, andv) the seven-step iterated semiclassics. Theand lower sets of points correspond to Heisenberg tikesl28
Heisenberg time i§;=256. Each curve is fit to the sum of a linear andN=256, respectively. Theoretical curves corresponding to Eq.
and quadratic function of time, in accordance with Eif). (24), with c=0.29, are drawn through the data.

gence ad o—. At the end of the next section, we will see gence of the iterative method fdry,>1, it is sufficient to
an example of a numerical test for moderate timevhere |00k at the behavior of the linear term in Fig. 1.

exact semiclassical calculation is in fact possible, though This is in fact done in Fig. 2. For each,, we find the
very time consuming. There, approximation techniques ar@umerical value of(Tg) that fits

explicitly shown to produce a very good answer with much
less effort. We assume errors in successive approximations
are uncorrelated, i.e.,

/T
||AtTQQ—Ag8||2: a(To)t+b(To)t?. (23

In Fig. 2, the quantitya(Ty) is plotted vsTq, using pluses

for N=256 and crosses fal=128. However, forTo=1,

the difference between tlguantumdynamics and the eight-
step iterated semiclassics is plotted, i.e., the linear coefficient

_ _ _ of |[U'=AY82, not [|AL—AYE%. The latter value is off
For comparison purposes, the difference with the quantunhe scale in the figure, being 80 7 for N=256 and

H 18|12 ;
dynamics |U,— (Ag)"|* is also computed. All these are 115. 1077 for N=128 (notice that this error, though rela-

plotted as a function of timein Fig. 1. From top to bottom, tively large compared to those obtained for biggey, stil

the quantities plotted are the squared differences between the q “ihe righti? dependende From Egs.(14) and (22), we
eight-step iterated semiclassié§® and (i) the one-step iter- predict

ated semiclassica}, (ii) the quantum mechanids!, (i)
the three-step iterated semiclasshg, (iv) the five-step
iterated semiclassics, and finally) the seven-step iterated
semiclassics. Each set of points is also fitted to a function of
the format+bt?, as suggested by E¢l4). for To>1, wherec is an undetermined constant of order
We notice first of all that the three-step, five-step, andunity. This predicted behavior fits the observed values of
seven-step approximations come progressively closer to th&T) quite nicely, withc=0.29. The resulting curves, fol-
eight-step approximation that is our basis of comparison. Théywing Eq.(24), are plotted in Fig. 2. We see that the error in
differences between all these are significantly smaller thaghe jterative approximation indeed Sca|e§’lagper time step,
that between any of these and the quantum dynamics. Fieading to an error of ordel by the Heisenberg time. Fur-
nally, the one-step iterated approximation dodsetatively)  thermore, the error goes to zero Bg>1, in the predicted
poor job of reproducing the long-time semiclassical behavioimanner, and is already much smaller than the difference be-

(however, the difference between it and the other calculatween the quantum mechanics and the semiclassicEy
tions is still small, due to the smallnessfof Consistent with =3,

the prediction of Eqs(14) and (22), all the curves are well
fitted by the sum of a linear and quadratic function of time.
Furthermore, at least fof5>3, the linear term is seen to
dominate for times up to the Heisenberg tim&,EN We have seen in the preceding sections how to obtain
=256 in this calculation Thus, to understand the conver- convergent approximations to the semiclassical propagator

T,

T tT T,
AT Ay AT A A AL, (22

’
To

1
§+— , (24

a(To)=ch?
Q TQ

IV. EFFECTIVE ONE-STEP LONG-TIME PROPAGATOR
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for long times, including times beyond the Heisenberg time. &
This dynamics can now be Fourier transformed to obtain %
local densities of states for various initial wave packets, and £
from these the eigenstates and eigenvalues could be exe
tracted. In particular, the semiclassical spectrum can be ob#
tained by tracing over the Fourier transformed semiclassica
evolution. The quantization tim&g can be increased until
the desired level of convergence is reached, and the eige
states and eigenvalues obtained in this way can finally be
compared with those of the quantum matrix.

This, however, is a rather tedious process, requiring the %
approximate semiclassical propagator to be evaluated a:
many values of, from short times to times well beyorid, . S
Moreover, if we settle on a fixed quantization tinig, and
computed all long-time dynamics using it, we will finally

ong-time p

ective lon,

ence to e

€T

102
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104
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107
10—
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10—10
10—11
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T (quantization time)

FIG. 3. Exponential convergence of the quantilyTQ

obtain nothing more than the eigenstates and eigenvalues efATQA;{l towards theeffectiveone-step long-time semiclassical
the matrix ATQ. So clearly the sensible thing to do is to propagatoD, [Eq. (26)]. Data provided foD,---Dg; Dg is used

diagonalizeATQ directly for a range of values ofy and

check for convergence d,>1. Unfortunately, a technical
difficulty arises here. Eigenstates of the true dynarticsgn-
tum or semiclassicalwith eigenphases separated approxi-
mately by an integer multiple of 2/ T4 may get mixed with
each other in the diagonalization @fTQ, preventing one

from extracting the true eigenstates. This behavior appears
be generidit does not happen iA; due to level repulsion in
the presence of chapOne can try to get around this diffi-
culty by comparing the eigenstates/be for arange ofTq,

as the reference.

5.4x10 12 for the difference betweeig and Dgy). For
comparison, we also measuf@;—Dg||?=4.6x10"° and
|[U—Dyg||?=6.2x10"°.

Remarkably, we find exponentially fast convergence with
the quantization time, in marked contrast with the power-law
@onvergence obtained previously for the dynamics. The data
agree well with the exponential form? exp(8.13.2T Q)
which is also plotted in Fig. 3. This exponential behavior is
consistent with analogous results seen in cycle expansion

and selecting those that come closest to agreeing for severglethods. How can it be reconciled with the power-law be-
values of T, . Such a procedure does in fact appear to conhayior seen in Eq(13)? Let

verge to a reasonable set Mf eigenstates, and it might be
expected to produce results comparable to those that would
be obtained by Fourier transforming long-time dynamics
produced by using several matricA$Q. (For example, we
could approximated;o~AgAS, Aj0~A3A¢, etc. This pro-
cedure is in fact useful for evaluating long-time propagators
at arbitrary timed, including those that are not divisible by
a suitable value oTg.)

stitution into Eq.(25)] that DTQ
quickly. However, it would not be consistent with E4.3),

D,= lim Dr. (26)

TQ—‘oc

Now clearlyA,=D'(1+ ¢, wheree, is a correction falling
off exponentially witht, would satisfy the findingupon sub-

converges exponentially

However, a simpler solution now presents itself. GivenWhich requires power-law behavior for the dynamics, and
that we believeAr  have similar eigenstates for all values which we have seen verified numerically. The two results

To>1, these must also be the eigenstates of
Dr = ATqAT_Ql_ 1 (25

for example. No mixing of eigenstates should ariseDHqQ

can be reconciled if we notice that exponential convergence
of DTQ to D, only requires

A=D!(1+e,+¢). (27

Here | e|>=O(#? exp(—at)), while e, is a t-independent

(because of level repulsignand moreover this method has matrix with norm|e,|?=0(#?). a is a constant associated
the advantage that the semiclassical eigenvalues can be regfih the mixing time scale of the underlying classical dy-
off directly, without having to decide which root of an eigen- namics. Now when taking the produb=AA, Y, the e,
phase must be taken in each cabg.is then increased, and contribution cancels, producin®, plus a time-dependent
convergence to the “true” semiclassical eigenstates and eigorrection that goes a® (%2 exp(—at)). However, if we
genvalues is obtaine¢convergence is expected based ONcompareA, with A{\;IM using Eq.(27), wheret andt/M are
what we know about the convergence of the dynamics fromysqmed for simplicity to be large, we notice that the latter

the two previous sections
In fact, it is sufficient to look at convergence of t@erQ

quantity has an extrl — 1 term of ordere, compared with
the exact semiclassios;. This is consistent with what we

matrix. In Fig. 3, the results of such an analysis are prefound in Eq.(11), and leads to power-law errors as in Eq.
sented, for the same system as that studied numerically i 3). For example, from E¢(27) we seeAZt—At2=O(e,,), in

Sec. lll. Here a Heisenberg tinimatrix size N=64 is used.
We plot the squared norrﬂ{)TQ—DgH2 for 2<To=<6 (for

agreement with Eq(9).
Our interpretation of Eq(27) is thate; is an error that

To>6, numerical errors begin to play a role in the errorresults from concatenating short classical paths to produce

analysis, however

the downward trend continues tdong ones. It is thus analogous to the errors obtained in ap-
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proximating long periodic orbits by short ones in cycle ex- V. CONCLUSION
pansion methods, , on the other hand, is an error in some We h in th di tion that long-ti
way associated with projecting the full semiclassical dynam- '€ have seen In he preceding section that fong-time
ics for any timet onto quantum initial and final states. This sem|clas'3|callbehaV|or IS given to ex'ponenua.lly 9°°d accu-
error is therefore independent of the time after which suct{acy Py iteration of an effective matrio, that is different
projection is performed. It should be possible to make a con{rom both the quantum evolution matrix and the one-step
nection between this effect and what happens in the baker&emiclassical propagatey; . In fact, the one-step semiclas-
map, for example, when a slightly higher-dimensional effec-sical propagator contains essentially no information about
tive semiclassical spadgén which the semiclassical dynam- long-time semiclassical dynamics, except of course for the
ics is almost exactly iterativanust be projected ontid vec-  Similarity based on both being related to the quantum evolu-
tors to produce quantities that can be compared withion. However, knowing the semiclassical dynamics for
quantum matrix elemen{$]. One would also like to under- timesTy>1 (measured in units of the shortest periodic orbit
stand better the parametrization ambiguities in the definitionime) enables one to deduce stationary semiclassical behav-

of D, ande, . For example, we could have written ior, including dynamical information to the Heisenberg time
and beyond. Why is long-time semiclassical information ex-
A=(1+e,+¢)D! (28) hausted affo>1? In periodic orbit methods, one expects

knowledge of long-time dynamics to be contained in orbits
. . . of length up to the mixing time {InN), at which point
as an alternative to E_(q27)7. 1Th's would be natl{rlal |f?/ve. had phase space has been explored at the scale of Planck’s con-
looked at the quantityAr,_1Ar, [=(A-1,A157)"] I~ gant. Longer orbits can be produced from these if we allow
stead ofDr, as defined above. smearing over sub-Planck coordinates. ThEN) periodic

In any case, we see that the matbx is key to under- points at the mixing time contai®(N?) pieces of informa-
standing the long-time semiclassical dynamics. This matridion if we record where each lies in relation to some quantum
is an effective one-step propagator that can be used to obtalrasis. Similarly, the full quantum theory can of course be
the semiclassical propagator at tirhe 1 with exponential described by alN>XN matrix. The information required to
accuracy, given the propagator for timelt thus gives to us  obtain the semiclassical theory is only slightly bigger, scal-
in a trivial way the stationary properties of the long-time ing in the same way wittN. We note that collecting and
semiclassical evolution. iterating semiclassical information after one time step on a

To show how the factorization given in E(R7) can be scale of 1IN allows one to resolve periodic orbits up to the
used in practice, we take the kicked map studied earlier ifmixing time, while collecting after a slightly longer exact
this section and compute an approximationApby evalu-  evolution is equivalent to having knowledge of periodic or-
ating bits longer than the mixing time, where exponential conver-
gence is expected.

The results obtained here may shed light on the accuracy
of the Gutzwiller trace formula in the energy domain.
Though the relationship between the two approaches is a
] ) ] nontrivial one(the trace formula focusing gperiodic orbits,

All errors € in Eq. (29) are exponentially small in the rel- anq thus corresponding to a stationary phase integration of
evant timed: an error of sizesy is made in the first approxi- - the dynamick one may hope that further progress may be
mation, and errors of size;, €, in the third and fourth steps, made in bringing together dynamical and periodic orbit
the latter of course dominating the error in the final answermethods. In any case, we have already seen that the station-
Notice that we need to evaluate the semiclassical dynamicgry phase integration implicit in the trace formulanist nec-

A exactly at two values of to obtain the two matriceB,  essary for obtaining sensible semiclassical eigenvalues and
and e, . After computing the semiclassical propaga®y  eigenstates, which compare well with those of an exact quan-
exactly, we find(factoring out therr dependancdethat the  tym calculation.

error | (AsA; 1) *As—Ag||? is 0.000 0%2. In the same units, More work is also needed in bringing together the ap-
we find the errofl AsA,— A||? to be 0.8:2, still not bad, but  proximation methods discussed here with other semiclassical
lacking the exponential error suppression. For comparisorgonsolidation techniques, such as those that have been used
the difference between the exact semiclassical 9-step propguite successfully for the baker's ma).

gatorAg and the quantum mechanitk, is 3.1:2, while the These iterative methods may in addition provide a new
difference from the 9-times iterated one-step propagatoperspective on the long-standing questions of classical peri-
(|IA3—Ag|?) is 89.5:2. (It is interesting to note just how odic orbit correlations and of how semiclassical dynamics
poorly iteration of the one-step semiclassical propag&tor can reproduce Heisenberg-time quantum behaist. All

does in reproducing the correct longer-time semiclassical besuch issues become much less mysterious once we realize
havior) that long orbits are given to a good approximation by con-

Of course, this procedure can now be extended to timesatenating shorter classical trajectories. Thus, long-time
much longer than 9, where exact evaluation of the semiclassemiclassical evolution can produédunction peaks in the
sics is clearly not practical. Six digits of accuracy in long- spectrum for essentially the same reason as the quantum-
time semiclassical propagatiofbeyond what is expected mechanical evolution, i.e., it is givef@pproximately by it-
merely from the smallness df) are obtained with only a eration of an(almos} unitary finite matrix.
modest amount of work. Many of the findings may be modified in the presence of

Ag~DJ(1+¢€,)=D?D3(1+¢,)~DiAs~(AsA; 1)*As.
(29
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discontinuities, strong diffraction, and caustics, wherereproduced by the long-time semiclassical dynamics, even
classical-quantum correspondence is more poorly undewhen detailed correspondence between the propagators has
stood. In particular, the proliferation of caustics may be ex-been lost.

pected to cause a divergence between semiclassical and

guantum dynamics well before the Heisenberg time is

reached[4]. In these situations, a better understanding of ACKNOWLEDGMENTS
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